If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+12t=0
a = -4.9; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-4.9)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-4.9}=\frac{-24}{-9.8} =2+3.1428571428571/7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-4.9}=\frac{0}{-9.8} =0 $
| Y=-4.9x^2+21x | | -6s+9s=23 | | 6u=4+4u | | -55=5(5x+9) | | -4.9t^2+12t=12 | | Y=3*(1/2)^x | | 7x-17=5x-13 | | 2x+1,8=3,4 | | -10=2/9y | | 19=7x+9x | | 5.3x10.2=6x | | x/3-17=7 | | -30=(7x+4) | | 28=-14w-14 | | 18-3x=7(9x+5) | | 12x=16= | | -3/2(-5+x)=24 | | x-6.54=-8.37 | | 5(m+6)=15 | | 3(2x+1)+2(x+3)=9 | | -5z-11=4 | | −32(−5+x)=24 | | _3f=4 | | 3x-6=x=2 | | 4x-1x=6x-39 | | 3(8x+2)=30 | | 5x+9=134 | | y=×^2-8×+12 | | 4x+50=2.5x+4 | | 7-6(6n+6)=33-5n | | 8(5x+2)=18-6x | | 3x-(5x+7)=2x+3 |